Skip to content

Mohammad Nurdin Notes Posts

How to extract data using Selenium without using Facebook Graph API

This tutorial explains how to extract data using Selenium and Python without the Facebook Graph API. The reason why we use Selenium instead of Facebook Graph API is that Facebook could possibly modify or disable any endpoint accesses to the API at any time. One reason is the Cambridge Analytica fiasco, abusing their gains on the Facebook platform.

Leave a Comment

7 Lessons You Can Learn from the Siraj Raval

Reddit seems to be a haven for everything you can imagine on the internet. A lot of things that often go overlooked. However, there is a post about the so-called AI guru named Siraj Raval exploiting students with charged them $199 for machine learning course that copy-pasted other people’s GitHub code and banning students from asking for a refund. There are a few lessons that we can learn from this story so we are aware of this problem and make sure it won’t happen on us in the future especially to naive and AI practitioners that self claim as ‘guru’.

1 Comment

Getting to Know Your Data

You’re going to want to understand the following: what kinds of characteristics or areas make up your data? What are the values of each attribute? What are the discrete characteristics and which are continuously valued? What is the look of the data? How are the values distributed? Can we visualize the data in order to get a better sense of it all? Can we find outliers? Can we evaluate the resemblance between some data objects and others? The subsequent assessment will assist to gain such insight into the data. Knowledge of your data is helpful for pre-processing data, the first important task of data analysis.

Leave a Comment

Introduction to Data Science

  1. Why Data Science?
  2. What is Data Science?
  3. What is Data Science process?
  4. What Kinds of Data Can Be Analyzed?
  5. What Kinds of Patterns Can Be Analyzed?
  6. Which Technologies are Used?
  7. Which Kinds of Applications Are Targeted?
  8. Major issues in Data Science
  9. Data Science and Society

Why Data Science?

We live in a world where a vast amount of data are collected daily. It is a significant necessity to analyze such data to discover knowledge from it.

We live in the information age

It is a popular saying, but in fact, we live in the information age. Every day, terabytes or petabytes of data flow into our computer networks, the World Wide Web (WWW), and various data storage devices from the company, society, science and engineering, medicine, and almost every other aspect of everyday life. Powerful and versatile tools are badly required to automatically discover and convert precious information from enormous quantities of data into structured knowledge.

Leave a Comment